# baisic stat

**Q1 Read the following table and answer the questions below:-**

x |
P(X=x) =f(x) |

0 |
0.15 |

1 |
0.22 |

2 |
C |

3 |
0.20 |

4 |
0.18 |

- The value of C = â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦
- P(x >3) =â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..â€¦…….
- P(x2) =â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦.â€¦â€¦â€¦â€¦â€¦â€¦.â€¦â€¦.â€¦…â€¦………
- P(x>4) = â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.
- P(.1 x<3) =â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦….â€¦.
- P(x=1.5) â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦â€¦â€¦â€¦
- The expected value of x (the mean of x) =

â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦..

**Q2** : If the mean number of serious accidents per year in a large factory is 4 find the following :

- P(x=3) =
- P(x = â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦.â€¦.
- P(x= â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦
- Mean and variance = â€¦..â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦

**Q3 : **If the defective productproportionin one factoryis 30% if a random Sample of 5 units is drawn from this product . Then find :

- The probability of getting no defect units .
- The probability of getting more than 3 defect units. â€¦â€¦â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦..
- The probability of getting less than 2 defect units. â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦…â€¦
- The mean and variance of the defect product. â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦
- P(z >.15)= â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.
- P(z<1.18
**)****=**â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦

â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦..â€¦

â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..â€¦.â€¦

**Q4: **For the given standard normal distribution . Use Z- table to find the following probabilities:-

- P(-1.6<z<2.7) = â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..

- P(z=2.25)=â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦

**Q5**: Male weights are normally distributed with a mean of 60 kg. and a standard deviation of 10 kg. If we select one man at random then find the following probabilities :

- P(x=40) =â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦.
- P( x=â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦.â€¦.
- P(x70)=â€¦â€¦â€¦â€¦.â€¦â€¦â€¦â€¦..â€¦â€¦â€¦â€¦â€¦â€¦â€¦.â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦.
- P(65= â€¦â€¦â€¦â€¦.â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦â€¦………………