deductive reasoning and how to logically evaluate propositions
1.
“It is false that parts of the Moon were once soaked by water†is:
A) A negation
B) A conjunction
C) A disjunction
D) A simple proposition
2.
“Unless we can control the carbon dioxide in the atmosphere, we’ll face a danger of potential climate change 50 years from now†is:
A) A negation
B) A conjunction
C) A disjunction
D) A simple proposition
5.
~ J v ~ (G ⊃ N) is a:
A) Negation
B) Disjunction
C) Conditional
6.
~(A ∙ B) ≡ (~ A v ~ B) is a:
A) Biconditional
B) Conjunction
C) Negation
D) Disjunction
7.
Construct a truth table for ~ (~ J ⊃ I). How many rows must the truth table for this formula have?
A) 2 rows
B) 4 rows
C) 8 rows
8.
Construct a truth table for (G ⊃ ~ G) ≡ ~ (G ∙ ~ G). Which truth values go in the column under the horseshoe inside the first parentheses?
A) TTFFFFTT
B) TT
C) TTTF
D) FT
9.
Consider ~ (E ∙ ~G) ⊃ (G v ~E). How many rows must the truth table for this formula have?
A) 2 rows
B) 4 rows
C) 8 rows
10.
What kind of proposition is represented by ~ (E ∙ ~G) ⊃ (G v ~E)?
A) A tautology
B) A contradiction
C) A contingency
14.
In “M v L, (M ⊃ I) ∙ (L ⊃ I) .·. I ≡ ( M ∙ L)â€, what’s the first premise’s main connective?
A) Disjunction
B) Conditional
C) Negation
16.
“F ⊃ ~N, I ⊃ F ∴ I ⊃ ~N†is a:
A) Modus tollens
B) Modus ponens
C) Contraposition
D) Hypothetical syllogism
E) Disjunctive syllogism
17.
What formal fallacy is committed by the following argument? “Driving while intoxicated is on the rise. If laws on drunk driving are not enforced, then driving while intoxicated will be on the rise. Therefore, laws on drunk driving are not enforced.â€
A) Denying the antecedent
B) Affirming the consequent
C) Affirming a disjunct
18.
By applying the rule Com to “(D v B) ∙ [~(O ⊃ B) ⊃ A]†we can deduce:
A) [~(O ⊃ B) ⊃ A] ∙ (D v B)
B) ~(O ⊃ B) ⊃ A ∙ (D v B)
C) ~(O ⊃ B) ⊃ A
19.
Consider this proof:
(1) I ⊃ (E ∙ ~ L)
(2) I ∙ ~ D /∴ (I ∙ ~ D) ∙ ~ L
(3) I
(4) E ∙ ~ L
(5) ~ L
(6) (I ∙ ~ D) ∙ ~ L
What is the justification for line 3?
A) 1, 3 MP
B) 1, 3 Bicond
C) 2 Simp
20.
Consider this proof:
(1) E • [ ~ I • (~ D v I)] /∴ ~ D v F
(2) [ ~ I • (~ D v I)] • E
(3) ( ~ I • (~ D v I)
(4) ~ I
(5) (~ D v I) • ~ I
(6) ~ D v I
(7) ~ D
(8) ~ D v F
What is the justification for line 7?
A) 6, 4 DS
B) 6, 4 HS
C) 4, 5 MP