due in 20 hours home state is CALIFORNIA – original work

Nursingwritersden.com presents itself as a viable option for nursing students seeking academic assistance. With a team of specialized writers, customized content, timely delivery, confidentiality, and dedicated customer support, the platform offers numerous benefits to its users. Students view Nursingwritersden.com services as a supportive tool to enhance their academic knowledge rather than a replacement for their own learning efforts. You can make your order today and you will never be disappointed.

Assignment 1: Discussion—Population Growth

To study the growth of a population mathematically, we use the concept of exponential models. Generally speaking, if we want to predict the increase in the population at a certain period in time, we start by considering the current population and apply an assumed annual growth rate. For example, if the U.S. population in 2008 was 301 million and the annual growth rate was 0.9%, what would be the population in the year 2050? To solve this problem, we would use the following formula:

P(1 + r)n

In this formula, P represents the initial population we are considering, r represents the annual growth rate expressed as a decimal and n is the number of years of growth. In this example, P = 301,000,000, r = 0.9% = 0.009 (remember that you must divide by 100 to convert from a percentage to a decimal), and n = 42 (the year 2050 minus the year 2008). Plugging these into the formula, we find:

P(1 + r)n = 301,000,000(1 + 0.009)42 
= 301,000,000(1.009)42 
= 301,000,000(1.457) 
= 438,557,000

Therefore, the U.S. population is predicted to be 438,557,000 in the year 2050.

Let’s consider the situation where we want to find out when the population will double. Let’s use this same example, but this time we want to find out when the doubling in population will occur assuming the same annual growth rate. We’ll set up the problem like the following:

Double P = P(1 + r)n 
P will be 301 million, Double P will be 602 million, r = 0.009, and we will be looking for n.
Double P = P(1 + r)n 
602,000,000 = 301,000,000(1 + 0.009)n

Now, we will divide both sides by 301,000,000. This will give us the following:

2 = (1.009)n

To solve for n, we need to invoke a special exponent property of logarithms. If we take the log of both sides of this equation, we can move exponent as shown below:

log 2 = log (1.009)n
log 2 = n log (1.009)

Now, divide both sides of the equation by log (1.009) to get:

n = log 2 / log (1.009)

Using the logarithm function of a calculator, this becomes:

n = log 2/log (1.009) = 77.4

Therefore, the U.S. population should double from 301 million to 602 million in 77.4 years assuming annual growth rate of 0.9 %.

Now it is your turn:

  • Search the Internet and determine the most recent population of your home state. A good place to start is the U.S. Census Bureau (www.census.gov) which maintains all demographic information for the country. If possible, locate the annual growth rate for your state. If you can not locate this value, feel free to use the same value (0.9%) that we used in our example above.
    • Determine the population of your state 10 years from now.
    • Determine how long and in what year the population in your state may double assuming a steady annual growth rate.
  • Look up the population of the city in which you live. If possible, find the annual percentage growth rate of your home city (use 0.9% if you can not locate this value).
    • Determine the population of your city in 10 years.
    • Determine how long until the population of your city doubles assuming a steady growth rate.
  • Discuss factors that could possibly influence the growth rate of your city and state.
    • Do you live in a city or state that is experiencing growth?
    • Is it possible that you live in a city or state where the population is on the decline or hasn’t changed?
    • How would you solve this problem if the case involved a steady decline in the population (say -0.9% annually)? Show an example.
  • Think of other real world applications (besides monitoring and modeling populations) where exponential equations can be utilized.

In the pursuit of academic success, the notion of quality work stands as an indispensable cornerstone. Whether in the realm of education, research, or professional endeavors, the adherence to high standards ensures that outcomes are not only exemplary but also a testament to one’s commitment to excellence. Nursingwritersden.com assures high quality work and timely delivery for all assignments. In the rare event that a student is dissatisfied with the final paper, Nursingwritersden.com offers revision services. The platform is committed to ensuring that each nursing term paper meets the student’s expectations and academic standards. As such, they have quality assurance protocols in place to maintain the highest level of quality in their work.

 

 
Do you need a similar assignment done for you from scratch? We have qualified writers to help you. We assure you an A+ quality paper that is free from plagiarism. Order now for an Amazing Discount!
Use Discount Code "Newclient" for a 15% Discount!

NB: We do not resell papers. Upon ordering, we do an original paper exclusively for you.